
MSc. DSAI

Assessing the capabilities of

self-explainable neural networks on

gender text classification

Internship report

Presented and defended on August 26th, 2022

by

Mariana CHAVES

Company supervisors: Lucile Sassatelli and Frédéric Precioso

I3S and Inria



Contents

Abstract 1

Introduction 2

Chapter 1 Related work 4

1.1 Data science in gender studies . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 What is interpretability and why is it important . . . . . . . . . . . 5

1.2.2 Taxonomy of interpretability methods . . . . . . . . . . . . . . . . . 6

1.2.3 Self-explaining machine learning . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 The Cornell Corpus 11

2.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Gender biases in the corpus . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 3 Text classification models 18

3.1 Interpretable non-deep models . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Non-interpretable deep models . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Fully connected networks, LSTMs and Bidirectional LSTMs . . . . 22

3.2.2 BERT models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 4 ProtoryNet 26

4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Prototype initialisations . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 Performance on gender classification . . . . . . . . . . . . . . . . . 30

4.3.3 Challenging the interpretability of ProtoryNet . . . . . . . . . . . . 31

i



ii

Conclusion 34

Bibliography 35

Appendix 40



Abstract

Artificial Neural Networks have demonstrated astonishing potential to absorb natural lan-

guage skills, offering a new and rich path to study human speech. However, harvesting

the knowledge incorporate in those models has proven to be a major challenge since their

sheer scale prevents any direct interpretation of their working. The recently proposed

architecture ProtoryNet promises to provide itself access to its functioning. This is an

immensely valuable trait for both research and applications, and in this work we investi-

gate those promises. Namely, we study ProtoryNet in the challenging context of gender

classification of movie characters. To that end, we construct a sizeable dataset of labelled

character dialogues based on the Cornell corpus and use it to benchmark ProtoryNet and

many other reference machine learning models.

Our results indicate that, while the accuracy of ProtoryNet is on par with that of

well-established deep models, it does not provide superior explanations when compared

to classic intrinsically interpretable models.

1



Introduction

“Life imitates Art far more than Art imitates Life”

– Oscar Wilde, The Decay of Lying

Gender roles are social constructs and, as such, are influenced by the media. They are

malleable sets of ideas, shaped in large part by observation of pre-established models. Cin-

ema is perhaps the most important exposition of those models. Not only for its immense

reach but also for its multimedia nature. Movies are bound to quickly communicate ideas

to broad audiences and, to do so, they commonly resource to distilled representations

of cultural models, in all of their aspects. In particular, they absorb and present back

to us a condensed version of how genders should sound, look, and behave, shaping our

collective imagination and influencing our attitudes towards these ideas. Unfortunately,

those distillations are prone to rely on archetypes and simplifications [1] and sometimes

screenwriters resource solely on stereotypes [2].

The progress of artificial intelligence and machine learning has offered us a way to study

the patterns that govern gender representation in media large scales. Several authors have

used those tools to perform gender studies on movie scripts [3, 1, 4, 2] and other media

[5, 6, 7, 8]. They bring to light how stereotypical gender roles and biases are conveyed by

those means.

Many works in this field defined the patterns they want to measure beforehand, re-

sourcing to feature engineering, semantic fields, and other similar latent variables to char-

acterise dialogues of male and female characters. Instead, we propose to learn those

motifs.

We focused on gender classification based on text data via self-explainable neural

networks. These models output not only a solution to the task at hand but also an

explanation of their decision [9], making them a promising tool for understanding patterns

of gender in speech.

More precisely, this work studies the ProtoryNet model [10]. It belongs to the group

2



3

of self-explaining neural networks for sequential data, hence, being suitable for text clas-

sification. The network learns prototypes : data points or parts of data points that are

exemplar cases for each category. It makes predictions by comparing the inputs to those

prototypes. For example, if the input is more similar to the prototypes related to the

category “female”, it is expected for the model to predict “female.”

My1 main objective consisted in assessing the capabilities of ProtoryNet, both in

terms of its accuracy and the clarity of its explanations. The machine learning task

consisted in classifying “male” and “female” film characters based on their speech. To

this end, I assembled a sizeable dataset for the task based on existing films corpora,

the main source being the Cornell corpus [11]. To properly evaluate the performance

of ProtoryNet I compared it with other text classification models. I trained a variety

of machine learning models, from intrinsically interpretable models (logistic regression

and complement näıve bayes) to deep models regarded as black-boxes (fully connected

networks, LSTMs, Bidirectional LSTMs and BERT models).

This study is part of the TRACTIVE (acronym for TowaRds A Computational mulTI-

modal analysis of film discursiVe aEsthetics) initiative. TRACTIVE is a project supported

by Université Côte d’Azur, Inria, I3S, Sorbonne Université, Université Toulouse 3, Uni-

versité Sorbonne Paris Nord, and CNRS, and its main objective is “to characterise and

quantify gender representation and women objectification in films and visual media, by

designing an AI-driven multimodal (visual and textual) discourse analysis.”2 The project

explores many aspects of gender representation in media. One of those focuses on as-

sessing the text classification capabilities of prototype-based deep neural networks. The

current study lies on that framework.

Chapter 1 provides a glance at gender studies that used machine learning, as well as the

terminology related to interpretability, self-explainable machine learning, and prototype-

based models. Chapter 2 describes the data collection process, based on the Cornell

corpus. Also, I use word embedding models and the Word-Embedding Association Test

(WEAT) [12] to provide a preliminary analysis of the gender biases present in the dataset.

Subsequently, I present performance results for different text classification models in Chap-

ter 3. Finally, in Chapter 4 I explain ProtoryNet’s characteristics and evaluate its accuracy

and the quality of its explanations.

1Following the indication of the reviewing committee, first person singular (e.g., “I,”, “my.”) is used

to indicate the author’s independent analysis or contribution, while first person plural (e.g., “we”) refers

to activities where other members of the group took part in the implementation.
2https://www.i3s.unice.fr/TRACTIVE/

https://www.i3s.unice.fr/TRACTIVE/


1

Related work

1.1 Data science in gender studies

Data science enabled the analysis of gender patterns in large corpora. Motifs that pass

undetected by humans can be capture by machine learning models. In [6], the authors use

a corpus of emails and support vector machines to determine the gender of the author of

each document. The work [7] uses transcriptions of conversations and machine learning

approaches (specifically logistic regression and BERT models) to explore distributional

differences in language use across gender. Convolutional and recurrent neural networks

were used to automatically annotate gender of mentions in the text in [8]. They apply

these tools to movie summaries, movie reviews, news articles, and fiction novels. The

authors of [5] use support vector machines, Bayesian logistic regression and AdaBoost

decision trees to identify the gender of the author of news and emails. In [1] natural

language processing techniques are applied on a corpus of films to extract gender pat-

terns. The work [4] creates a corpus based on screenplays and collect statistics related to

gender using feature engineering. In [2] logistic regression and näıve bayes classifiers are

trained to distinguishing the gender of movie characters. While in [3], they implement a

computational approach to automate the task of finding whether a movie passes or fails

the Bechdel test. A movie passes the test if there at least two named female characters

that talk to each other about something besides a male character. They show that movies

that fail the test are highly likely to have less meaningful rolls for women.

Those previous studies unveil differences in grammatical structures used by each gen-

der, such as women’s tendency to use emotionally intensive and affective adverbial and

adjectival expressions, such as “really,” “so,” “very,” “quite,” “adorable,” and “charming.”

4



1.2. Interpretability 5

Whereas men’s conversational patterns aim to retain status and attention. For instance,

they use more first-person singular pronouns such as “I” and more directive sentences

[1, 5, 2]. In [4] the authors identify that female character utterances tend to be more

positive and that male characters seem to have higher percentage of words related to

achievement. Also, polite words such as greetings and “please” are favoured by women,

while cursing is a male-favoured practice [1, 2, 4, 7]. They show that women’s lexical

fields in movies are more related to shopping, cleaning, personal care, and family, whereas

men’s are associated with money, sports, work, and male friendship [1]. The work in [7]

identifies tendencies of women to use minimal particles such as “my God,”“mhm,”“blah,”

“huh,” and “hm”, while men tend to use “ain’t,”“innit,”“eh,” and “uh.” Also, among the

top terms used by male speakers in spoken conversation they identified the nouns “mate,”

“game,”“quid,” and “football”, while for female speakers the identified nouns were “baby,”

“weekend,”“hair,”“birthday,” and “cake.”

Other works such as [12, 13] show that neural networks absorb human biases, including

gender related ones.

1.2 Interpretability

1.2.1 What is interpretability and why is it important

Interpretability is defined as “the degree to which a human can understand the cause of

a decision”[14], or consistently predict a system’s result [15]. Unfortunately, there is no

consolidated mathematical definition to measure such degree. In terms of models, one

is considered more interpretable than another if its decisions are easier for a human to

comprehend [15]. Therefore, the explanations of a model are constrained to be human-

understandable.

The importance of interpretability lies in the fact that if the model can explain deci-

sions we can check its fairness (ensuring that predictions are unbiased and do not implicitly

or explicitly discriminate against under-represented groups), privacy (ensuring that sen-

sitive information in the data is protected), reliability (ensuring that small changes in the

input do not lead to large changes in the prediction), causality (check that only causal

relationships are picked up) and trust, as it is easier for humans to trust a system that

explains its decisions [15]. In [16], the authors makes this last point evident with the

hypothetical example of a machine learning model used for medical diagnosis or terrorism

detection, whose predictions cannot be acted upon on blind faith, since its consequences



1.2. Interpretability 6

could be of high impact.

There is the need to evaluate the model as a whole before deployment. Usually, models

are evaluated using accuracy metrics. However, a model can provide the right answer

for the wrong reasons [17]. The European Union’s General Data Protection Regulation

(GDPR) requires companies to be able to provide an explanation about decisions made

by artificial intelligences [9]. Therefore interpretability of machine learning models is

becoming mandatory.

1.2.2 Taxonomy of interpretability methods

The different characteristics of interpretability methods allow us to categorise them.

Intrinsic or post-hoc interpretability. Intrinsic interpretability refers to models that

are interpretable due to their structure. The classic examples include simple models such

as decision trees, generalised linear models (GLMs), and generalised additive models. For

instance, in linear regression, where the predictions ŷ ∈ Rn are determined by

ŷ = θ0 + θ1x1 + . . .+ θpxp = θX,

where each xi ∈ Rn is an input variable, θi ∈ R, the estimated coefficient related to xi, and

θ0, the intercept. Given the linear relationships between the features and the prediction,

we know that an increase of one unit in the i-th feature, xi, increases ŷ by θi, if we

keep all the other features constant. This interpretation assumes that xk is a numerical

variable, but similar interpretations can be done for categorical ones. The key insight of

this example is that it is its structure that makes the model intrinsically interpretable.

Note that, intrinsic interpretability is not limited to simple models. For instance,

SENN [18], ProtoPNet [19], and ProSeNet [20] offer deep network approaches that are

intrinsic interpretable. The authors of ProtoryNet [10] (our model of focus) imply that

this model also belongs to this category, nevertheless I challenge this idea in Section 4.3.3.

Post hoc interpretability, on the other hand, refers to the application of interpretation

methods after model training [15]. These methods are mostly used to explain black-

box models. Due to the limited access to the inner workings of the model, post hoc

techniques usually use gradients or reverse propagation, (ε-Layerwise Relevance Prop-

agation (E-LRP) [21], Integrated Gradients [22], and Grad-CAM [23]), or they create

surrogate models that capture the input-output behaviour (LIME [16], kernel Shapley



1.2. Interpretability 7

values (SHAP) [24]). They approximate the behaviour of the black-box and/or show

trends in how predictions are related to the features.

Model-specific or model-agnostic. Model-specific methods are limited to a specific type

of model. For instance, the interpretation of regression coefficients cannot be directly

applied to a neural network model. Examples for deep models are saliency maps [25]

and DeepLIFT [26] which can only be applied to neural networks. ProtoryNet is model-

specific. On the contrary, model-agnostic tools can be used on any machine learning model

and are applied after the model has been trained. These methods do not have access to

model internals such as weights or structural information [15].

Local or global interpretability. Interpretability methods can explain an individual pre-

diction (local interpretability) or the entire model behaviour (global interpretability).

Global model interpretability explains how parts of the model affect the predictions. For

example, linear regression provides global interpretability, as its interpretations apply

for all instances. Local interpretability aims to answer why the model made a specific

prediction. ProtoryNet has global interpretability.

1.2.3 Self-explaining machine learning

Self-explaining machine learning models are intrinsic interpretability models which use

machine learning. They yield two outputs: the decision of the model and an explanation

of that decision [9]. ProtoryNet is said to belong to this class of models.

The importance of self-explainability.

Studies on interpretability of complex machine learning models has mostly focused on

estimating a posteriori explanations for previously trained models [18], i.e. the use of

post-hoc methods. Although post-hoc techniques can throw some light over the input-

output relations of a black-box model or mimic the calculations made by it, since they do

not completely unveil the inner workings of the model, some authors [27] claim that black-

box approaches should not be used for high-stake decision making, such as healthcare and

criminal justice. Instead, models with intrinsic interpretability should be applied.

The work [27] opts for self-explaining machine learning techniques over using black-box

models in conjunction with post-hoc techniques. It states that



1.2. Interpretability 8

• it is a myth that there is necessarily a trade-off between accuracy and interpretabil-

ity. Intrinsic interpretable models can often provide as good accuracy results as

their non-interpretable counterparts. For instance, the experimental results in [20]

and [19] support this statement by comparing their self-explaining models against

state-of-the-art deep learning models.

• Post-hoc methods provide explanations that are not faithful to what the original

model computes. If they were, the explanation would be equivalent to the original

model.

• Post-hoc explanations can provide ambiguous or nor stable results. For instance,

to intend to explain models used for image classification, saliency maps create heat

maps that can be overlapped with an image. The heatmap highlights the parts

of the image that are used by the classifier to take its decision. Nevertheless, the

saliency maps for multiple classes could be essentially the same or very similar. The

explanation for why the image is classified as Siberian husky can be the same as the

explanation for being classified as a transverse flute, as shown in [27].

Prototype-based models.

Among the self-explaining models, there are the prototype-based models. ProtoryNet is

part of this group. These approaches learn prototypes to provide its predictions and ex-

planations. By prototypes, I refer to data points or parts of data points that are exemplar

cases for a category. To make a prediction, these models compare a data point against the

prototypes. For instance, consider the MNIST [28] image classification scenario, where

the machine learning task is to classify images of handwritten digits. The prototypes for

the category “number 8” can be some images, or sections of images, from the training

set that well represent this category. For text classification, prototypes can be sentences,

phrases, or words extracted from the documents in the training set.

I detail how ProtoryNet uses prototypes for its predictions in Section 4.1. In the

following paragraphs, I discuss other prototype-based models that predated it.

A rich class of interpretable models is formalised in [18]. They design self-explaining

models in stages, progressively generalizing linear classifiers to more complex models.

As part of this family, they introduce Self-Explaining Neural Networks (SENN). Where,

instead of using the raw inputs for the explanations, more interpretable features are used.

These more general features are called interpretable basis concepts. For instance, when



1.2. Interpretability 9

using images as data points, instead of making interpretations for each pixel it is better

to interpret in terms of strokes. The model is defined as

f(x) =
K∑
i=1

θ(x)ih(x)i, (1.1)

where x1, . . . , xn ∈ R are raw input variables, θ is a deep neural network, and h(x) : X →
Z ⊂ Rk. X is the space of raw inputs, and Z, an a space of interpretable basis concepts.

The key is that, among others, h can be based on prototypes.

Prototypical part network (ProtoPNet) [19] is another deep network that works with

prototypes in image classification. It dissects the image to find prototypical parts for

each class and makes its prediction based on a weighted combination of the similarity

scores between parts of the image and the learned prototypes. The similarity scores

can be understood as to how strongly a prototypical part is present in some patch of

the input image. The network consists of a convolutional neural network, followed by a

prototype layer and a fully connected layer. Each prototype can be understood as the

latent representation of some prototypical part of a class.

The work [29] proposes a similar self-explaining neural network. Its architecture con-

tains an autoencoder and a special prototype layer, where each unit of that layer stores a

weight vector that resembles an encoded training input. Given the use of an autoencoder,

a corresponding decoder is necessary for visualizing the prototypes. This work represents

a particular case of the family of models formalised before [18].

ProSeNet [20] is a self-explaining model designed to work with sequence data. This

work is the most similar to our model of interest, ProtoryNet. ProSeNet generates a

determined number of prototypes for each class. The model consists of three parts:

• A recurrent sequence encoder network that maps each input sequence to an em-

bedding vector. The encoder could be any backbone sequence learning model, for

instance, an Long Short-Term Memory network (LSTM) [30]. The output at the

last step of the LSTM, the last hidden state, is used as the embedding vector.

• The prototype layer that contains k prototypes and measures the similarity between

the embedded sequences and the prototypes.

• A fully connected layer with a final softmax layer for output probabilities in multi-

class classification tasks.

The model aims to satisfy three criteria for constructing the prototypes: simplicity,

diversity, and sparsity. Simplicity aims to create simple and short prototypes. Diversity



1.2. Interpretability 10

focuses on avoiding redundant prototypes and prefers those that are sufficiently distinct

from each other. Sparsity establishes that for each input only a few prototypes should be

“activated.” In Section 4.1, you can observe that ProtoryNet also intends to enforce these

desiderata in the definition of its loss function and its the architecture.



2

The Cornell Corpus

My initial experiments on ProtoryNet were performed on a corpus of movie dialogues of

similar size to the corpus of positive and negative reviews used in the original work. These

first attempts resulted in poor accuracies, which I hypothesized to be an effect of increasing

the task complexity without providing significantly more data for the training. Intuitively,

while its generally easy for a human to identify if a review is positive or negative, it

is uncommon for the same text to make clear the gender of the author. To test this

hypothesis, I opted for a much larger dataset: the Cornell corpus [11]. This is a collection

of 304713 utterances extracted from film scripts along with details about the speaker and

the movie to which each dialogue belongs. It provides data for 9035 characters from 617

movies. Particularly, it includes gender information for 3015 of the characters. It also

indicates which dialogues belong to each conversation and which characters participated

on it.

2.1 Data preparation

Data labelling

Since the gender of many of the characters is not labelled in the Cornell corpus, I used

information from the TMDB 5000 Movie Dataset3 to automatically fill 588 of the miss-

ing labels. The automatic procedure attempts to match the name of the character and

movie between the two datasets, hence being limited by inconsistencies between them.

Ultimately, I manually annotated gender data for 3806 characters using information from

3Available on the Kaggle platform at https://www.kaggle.com/datasets/tmdb/tmdb-movie-

metadata?select=tmdb_5000_credits.

11

https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata?select=tmdb_5000_credits
https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata?select=tmdb_5000_credits


2.1. Data preparation 12

the TMDB website4. Combined, the three sources provided labelled data 7409 characters,

corresponding to 94% of the dialogues available in the Cornell corpus.

Data preprocessing

I based the data preprocessing on the work [2], which uses the Cornell corpus to train

non-deep models to classify characters as male or female based on their dialogues and

identify linguistic and structural features of dialogue that differentiate speech by gender.

The classification was done at character level, that is, each sample corresponds to all

dialogues of a character. I use the same approach. In their preprocessing steps, they

made an effort to avoid confounding factors that could yield spurious significant results.

Guided by their scope I:

• Used dialogues from characters who had at least 3 conversations with other charac-

ters, 10 utterances, and 100 words spoken in total. This was intended to consider

characters that have a non-trivial amount of speech in the film.

• Randomly selected equal numbers of male and female characters from each movie,

to obtain a balanced dataset.

• After removing punctuation, considered unigrams that appeared at least 5 times,

obtaining a vocabulary of 11233 unique words. I did not apply stemming, lemmati-

sation, or stop-word removal since we are interested not only in the lexical meaning

but also in the forms used by each gender. For instance, previous studies show that

women use more adverbial language compared to men [1, 5, 4, 2].

These filters preserved 2404 characters of the 9035 in the original Cornell dataset,

belonging to 567 movies. These characters represent 51% of the original dialogues.

Cross-validation approach

To control for the style of screenwriters, the authors of [2] use leave-one-group-out when

training their gender classification models, where the group is determined by the movie.

This is a special case of cross-validation, similar to leave-one-out. When applying leave-

one-out, each time, one sample is used as test set while all other samples are used for

training. Thus, there are as many folds as data samples. In contrast, when using leave-

one-group-out (in this case, leave-one-movie-out), each time, the samples in one of the

4https://www.themoviedb.org/

https://www.themoviedb.org/


2.2. Gender biases in the corpus 13

groups are used as the test set and the remaining groups are used for training. That is,

each cross-validation split takes the characters of one movie and designate them as the

test set. Hence, the number of folds is equal to the number of movies.

Nevertheless, this approach is not viable when the training of the model is very time

consuming. For instance, for ProtoryNet models, each epoch takes around 20 minutes

(using a GRID RTX6000-24C GPU). Therefore, training a model for 20 epochs using

leave-one-movie-out would take approximately 157 days. For this reason, I randomly

assigned each movie to one of 5 groups and used those for the leave-one-group-out. In

other words, each cross-validation split takes the samples from one of those 5 groups of

movies and uses them as the test set. This approach still provides some control for the

style of screenwriters and topics associated with each movie while keeping the number of

folds small (just 5). I will refer to this approach as leave-some-movies-out.

Leave-some-movies-out is used to asses the accuracy of all the text classification models

presented in Chapters 3 and 4. There are cases where, besides a train and test sets, a

validation one is also required. For instance, consider the training of a fully connected

network where we do not want to save the model the last epoch, but rather at the moment

when the validation loss was the smallest. The final model is determined by both the

training and validation sets. In this case, for each cross-validation split, one group of

movies is reserved as testing set. From the remaining samples, 80% are assign to training

and 20%, to validation.

2.2 Gender biases in the corpus

When training neural networks on text data, the format of the input comprises a chal-

lenging on its own since usual text encodings ignore the semantic aspect of language. For

example, consider the words“cat”and“car”. Even though they differ by a single character,

the word “cat” is semantically much further from “car” than from “kitten”, which does not

share a single letter with “cat”.

Ideally, before feeding the input to the model the words would be mapped into a space

in which distances between points reflect the semantic similarity between the respective

words. In the context of the previous example, it is desirable for the points associated

with “cat” and “car” to be further apart than the points associated with “cat” and “kitten”.

Such space is called a semantic space and a mapping of words into a vector space is called

a word embedding.



2.2. Gender biases in the corpus 14

Fortunately, neural networks can learn such mapping as long as enough data is avail-

able for the training. However, an embedder network itself is passive to interpretation

since the learned representation absorbs a lot of information from the dataset, as we will

see. Those embedder models represent more of a preprocessing step, and, thus, present

relatively simpler architectures, training algorithms, and tasks compared to other NLP

models powered by NLP. Therefore, they tend to preserve more direct relationships with

the statistics of the dataset. Those features can be leveraged to extract valuable statisti-

cal measures of the training data from the model. Among the many techniques that can

be used for this task, I chose to use Word2vec [31, 32] for this project. This choice was

based on its relatively low computational requirements and on the fact that it does not re-

quire specially large datasets. Moreover, the principles behind this method are reasonably

intuitive, so I provide an introduction to those in the next paragraphs.

First of all, a key strength of the Word2vec is that it does not rely on any manual

labelling. This means it requires no human experts at all. In technical terms, Word2vec

is an instance of unsupervised learning (more precisely, of self-supervised learning). This

immensely reduces the cost of training data, making massive datasets available.

The strategy is to leverage a poor word embedding and huge amount of training data

to obtain a good encoding. The simplest way to produce an initial embedding is to use

the dictionary of all the words5 present in the dataset as encoded space. This can be

achieved by associating each dictionary entry with a dimension. Then one can translate

a given piece of text into a vector by counting how many times each word occurs in the

piece and indicating this amount in the respective coordinate. For instance, suppose the

word “friend” corresponds to position number 555 of the vector, “my” to position 444, and

“little” to position 123. Then the text “my little friend” would be converted into a vector

with 1 in positions 123, 444 and 555, and 0s in all the other positions.

A few notes are pertinent at this point:

• This is not the final word embedding. This simple encoding is known as Bag-of-

Words representation;

• In practice those vectors have huge dimensionality since the dictionary tends to be

large. As a reference, the Cornell corpus produces a dictionary with roughly 11,233

thousand entries;

5The term “tokens” would be more general than “words”, but the latter was preferred for the sake of

didactics.



2.2. Gender biases in the corpus 15

• Short samples of text result into vectors consisting mostly of zeros as most text use

a small fraction of the words in the dictionary;

• This representation completely ignores grammar and even the order in which words

appear.

Now we need a way for the model to “train itself” to extract semantic information

from text. The problem is that, at this point, no tool connected to semantics is available

yet. To work around this limitation, one can employ word placement as a proxy for word

meaning: if two words are used in similar contexts, they should be semantically close.

In practice, the network is trained in the following routine:

• Iterate through the dataset, word by word;

• Encode the current word and give it as input to the model;

• Try to predict the neighbourhood (its corresponding vector) of the original word,

for example, the 5 previous and 5 next words (as a Bag-of-Words representation).

This training routine is known as skip-gram. I preferred it to the alternatives as, according

to the original work [31], it performs better for infrequent words.

Since the answer for this query is known (the words nearby the target), it is possible

to use it to improve the network’s guess. This does not provide the desired semantic

embedding directly, but it can be found it in the intermediate layers of the neural network.

The architecture is such that the information flows through a relatively narrow point. To

give an idea, the architecture employed takes in the data through more than 10 thousand

input neurons and forces that through only 100 neurons at some point. The activations

at this bottleneck is our final semantic embedding.

Surprisingly, this works very well. Indeed, this the semantic space obtained not only

has the desired property of keeping embeddings of semantically close words geometrically

close to each other, but it also behaves almost as a semantic vector space. This means it

is possible to perform operations with words and get a meaningful result. For example,

for such semantic space obtained, we have

vector(“england”)− vector(“london”) + vector(“tokyo”) ≈ vector(“japan”)

and

vector(“man”)− vector(“power”) ≈ vector(“woman”).



2.2. Gender biases in the corpus 16

As the last example indicates, the encoding of words itself carries human biases. Since

the task of gender classification is expected to be connected with such biases, it would be

desirable to have an idea of how much of those the encoder preserves. Quantifying such

subjective traits is, of course, a major challenge and many approaches to it exist in the

literature. For human subjects, perhaps the most famous one is the Implicit Association

Tests (IAT) [33] which attempts to reveal and measure the strength of the connection

between concepts through individuals’ behaviour. The IAT relies on the hypothesis that

humans tend to perform better in association tasks when those align with preconceived

biases. For example, subjects should be quicker to tag the word ”insect”with the label ”dis-

gusting” than with the label ”pleasant”. The IAT proposes to quantify this phenomenon

as a proxy for implicit biases.

It is possible to obtain similar measures for our embedder with an analogous statistical

test, the Word-Embedding Association Test (WEAT) [12]. When translating the IAT

paradigm to word embedders, the WEAT can exploit the fact that for these models the

association between words is quite evident since the semantic space is built to encode

such relations in its geometry. The method, thus, reduces to computing statistics similar

to those employed by the IAT using a suitable concept of distance in the semantic space.

More precisely, for our case, the test considers four groups of words, two with terms that

convey a target concept (e.g. “flowers” and “insects”) and two representing attributes (e.g.

“beauty” and “disgust”). Statistics are collected on the distance6 of pairs of words, one

from a target group and one for an attribute group. Finally, the effect size is expressed

in terms of Cohen’s d, with conventional small, medium, and high values being 0.2, 0.4,

and 0.8, respectively.

The work [12] detects strong biases in encoders pre-trained in many popular datasets.

So, to provide a clearer picture of the Cornell corpus, I train a Word2vec model from

scratch on it. Table 2.1 compiles our results.

The pair “musical instruments”/“weapons” and “pleasant”/“unpleasant” is used as a

control, as associations between the pairs are well documented [33]. While the test still

measures a strong bias towards musical instruments being pleasant and weapons being

unpleasant, the effect size is considerably weaker than that found for humans (d = 0.82 vs.

d = 1.66, respectively). I remark that many of the words in the list of musical instruments

from [33] did not occur in our dataset frequently enough to be included in the embedder.

Following [12], I compensated for that by removing the same amount of words from the

6In our context, the cosine similarity.



2.2. Gender biases in the corpus 17

Target words Attribute words Effect size (d) p-value

Male vs. Female terms Science vs. Arts 0.48 0.17

Male vs. Female terms Career vs. Family 0.42 0.20

Male vs. Female names Family vs. Career 0.48 0.18

Male vs. Female names Arts vs. Science 0.96 0.03

Instruments vs. Weapons Pleasant vs. Unpleasant 0.82 0.02

Table 2.1: WEAT results for the Word2vec embedding utilised for this project.

other three groups associated to that query uniformly at random. I provide the exact lists

of words used in Table 1.

Our probes for gender biases indicate the existence of moderate to strong tendencies in

the encoding of words. However, I did not obtain enough statistical significance for most

of them with the notable exception of the target groups “male names”/“female names”

with attributes “arts”/“science”. There, perhaps surprisingly, the test detects a strong

bias towards the association of male names to concepts related to arts relative to the

association of female names to words related to science.



3

Text classification models

Properly assessing the capabilities of ProtoryNet requires comparison with other text

classification models. In this chapter I present performance results for different intrin-

sically interpretable models (logistic regression and complement näıve bayes) and deep

models regarded as black-boxes (fully connected networks, LSTMs, Bidirectional LSTMs

and BERT models).

Recall that the task at hand consists in classifying characters as “male” or “female”

based on their utterances. Each sample corresponds to all dialogues of a character, prepro-

cessed as described in Section 2.1. Leave-some-movies-out is applied as cross-validation

method.

3.1 Interpretable non-deep models

In [2] the authors used the Cornell corpus to train logistic regression and näıve bayes mod-

els to distinguish between male and female characters based on their dialogues. Those

models are of interest due to their intrinsic interpretability, which I discuss later in this

section. I replicated part of the results described in [2] and added some variations, ex-

plained below.

Logistic regression and näıve bayes models are not suitable for raw text inputs, so each

text sample must be encoded in a vector representation. I applied two of such encodings:

Bag of words (BoW), which I described in Section 2.2, and term frequency–inverse doc-

ument frequency (TF-IDF) [34], a classical numerical statistic related to the importance

of a word to a text in a corpus. I experimented those using only unigrams, and using

unigrams, bigrams and trigrams. In the latter setup, each position of the vector represen-

18



3.1. Interpretable non-deep models 19

Model Average test accuracy ± stddev. (%)

General Male Female

Unigrams

TF-IDF + LR 69.49 ± 2.36 71.07 ± 2.55 67.91 ± 2.96

BoW + LR 67.88 ± 1.18 64.86 ± 1.77 70.89 ± 0.95

TF-IDF + CNB 69.70 ± 0.87 70.49 ± 1.81 68.90 ± 1.53

BoW + CNB 68.90 ± 0.59 86.39 ± 1.37 51.41 ± 1.82

1, 2, and 3-grams

TF-IDF + LR 72.09 ± 1.46 74.71 ± 3.69 69.47 ± 1.85

BoW + LR 69.66 ± 1.18 69.60 ± 3.81 69.73 ± 1.99

TF-IDF + CNB 70.43 ± 0.90 67.32 ± 1.45 73.54 ± 1.23

BoW + CNB 70.89 ± 1.25 75.14 ± 2.07 66.64 ± 1.63

Table 3.1: Logistic regression (LR) and complement näıve bayes (CNB) models’ accuracy

results using leave-some-movies-out cross-validation.

tation is related either to a word or to a group of words. For example, position number

16 could be related to “my,” position number 29 to “my little,” and position number 64 to

“my little friend.” Following the strategy in [2], I considered only n-grams that appeared

5 or more times, obtaining a vocabulary of 11233 words for unigrams, and 65309 n-grams

for unigrams, bigrams, and trigrams.

For näıve bayes models, I applied the Complement Näıve Bayes (CNB) algorithm

[35], which is an adaptation Multinomial Näıve Bayes (MNB). The work [35] empirically

supports that the parameter estimates for CNB are more stable than those for MNB and

that CNB regularly outperforms it on text classification tasks.

I use the scikit-learn [36] implementation of logistic regression and CNB, tuning the

hyperparameters through grid search. The best combinations found are reported in the

Appendix (Tables 2 and 3).

Table 3.1 shows that “simple” non-deep models can achieve test accuracies between

67.88% and 72.09%. Models using unigrams, bigrams and trigrams perform better than

their counterparts that use only unigrams. This is expected since the first ones have more

information at their disposal. Although the best performing model uses logistic regression,

its test accuracy confidence interval overlaps with two of the CNB models. Hence, there

is not a clear winner between logistic regression and CNB. Also, note that one of the CNB



3.1. Interpretable non-deep models 20

Top Bottom

n-grami eθi n-grami eθi n-grami eθi n-grami eθi

he 1.67
...

... the 0.60
...

...

hes 1.50 of me 1.32 got 0.63 my wife 0.76

my husband 1.43 oh 1.31 on 0.69 she 0.76

so 1.42 cant 1.31 here 0.69 running 0.76

with him 1.38 god 1.31 hey 0.70 shes 0.76

my god 1.37 him 1.30 right 0.70 understand 0.77

are you 1.36 what is it 1.30 of 0.72 hey you 0.77

are 1.36 should 1.27 her 0.73 there is 0.77

just 1.35 awful 1.27 there 0.73 up 0.77

nice 1.35 cant believe 1.27 yeah 0.74 could 0.77

youre just 1.33 dont 1.28 man 0.75 problem 0.78

husband 1.33 silly 1.28 gotta 0.76 its the 0.78

oh my 1.32 please 1.26 her to 0.76 shit 0.78
...

... we were 1.25
...

... business 0.79

Table 3.2: n-grams related to the top and bottom coefficients of the best performing

logistic regression model, along with their exponentiated coefficients. n-grams related to

top coefficients are more linked to the category“female,” while those related in the bottom

are more related to the category “male.”

models (BoW + CNB applied to unigrams) is clearly skewed towards the class “male.”

Given that the best performing model uses logistic regression, let me detail the type

of interpretations that the model offers. Recall that such model is determined by

ln

(
Pr(y = 1)

1− Pr(y = 1)

)
= ln

(
Pr(y = 1)

Pr(y = 0)

)
= θ0 + θ1x1 + . . .+ θpxp,

where n is the number of data points, y ∈ {0, 1}n, each xi ∈ Rn is an input variable,

θi ∈ R is the estimated coefficient related to xi, and θ0 is the intercept. The term inside

the logarithm is the odds of belonging to class 1. Thus,

odds =
Pr(y = 1)

Pr(y = 0)

= exp(θ0 + θ1x1 + . . .+ θixi + . . .+ θpxp)

= eθ0 · eθ1x1 · · · eθpxp .



3.2. Non-interpretable deep models 21

Now, increasing the i-th input variable by one unit, we have

eθ0 · eθ1x1 · · · eθi(xi+1) · · · eθpxp = eθ0 · eθ1x1 · · · eθixi · eθi · · · eθpxp

= eθi · odds.

That is, all other variables constant kept constant, an increase of one unit to the i-th

feature changes the odds of belonging to class 1 by a factor of eθi . Note that if θi = 0,

then eθi = 1, and, hence, the estimated odds are unchanged.

Consider now the model with the best test accuracy (logistic regression on the TF-

IDF representation of unigrams, bigrams and trigrams). Dialogues by male and female

speakers were coded with 0s and 1s, respectively. The word “he” is linked to the highest

coefficient, whose exponential is 1.67. This means that for every increase in one unit

of the TF-IDF score of the word “he” the odds that a text belongs to a female speaker

augments by 67% (this is equivalent to say that it augments by a factor of 1.67). On the

other hand, the word “the” is linked to the smallest coefficient, whose exponential is 0.6.

Hence, for every increase in one unit of its TF-IDF score the odds that a text belongs to a

female speaker diminishes by 40%. More broadly, words with higher coefficients are more

related to the category “female,” while those with smaller coefficients are more linked to

the category “male.”

Table 3.2 presents the most associated n-grams to each category, which match some

of the results of [2, 5, 1, 4, 3]. There is a predominance of references to women in men’s

speech and vice-versa. For instance, “her,”“her to,”“she,” and “my wife” appear among

the words related to the male speakers, while “he,”“my husband,”“with him,” and “him”

relate to female speakers. Women use more adverbial and adjectival expressions, such as

“so,”“nice,”“awful,” and “silly.” In contrast, men are more inclined towards expressions

related to nouns, which could explain the presence of the article “the.” Also polite words

(e.g., “please”) as more favoured by women, while cursing is a male-favoured practice. The

words “business” and “running” show the relation of male speech with lexical fields such

as money, sports and work. Women’s speech includes more interjectional phrases such as

“my god” and “oh.”

3.2 Non-interpretable deep models

In this section I explore the capabilities of deep neural network models of different archi-

tectures to distinguish male and female characters based on their speech. In contrast to



3.2. Non-interpretable deep models 22

the previous section, I do not explore the possible explanations associated to the models.

Although post-hoc interpretability methods (e.g. LIME [16]) can be used to approximate

the inner workings of these models, such methods lie out of the scope of this study. The

models were implemented in Keras [37].

3.2.1 Fully connected networks, LSTMs and Bidirectional LSTMs

I experimented with different architectures to find good models for our classification task.

All of them start with an embedding layer that transforms each word in a text sequences

into a vector of a semantic latent space. That is, if the text sequence contains m words

and the latent space is of dimension `, the embedder generates a tensor E ∈ Rm×`. I

explored the following architectures:

1. Embedding + GlobalMaxPooling + Dense layers + softmax/sigmoid: the em-

bedding layer is followed by a Global Max Pooling function, which computes the

maximum for each column of E, yielding a vector of size `. Subsequently, two dense

layers are applied. Finally, either the sigmoid or the softmax function is used.

2. Embedding + LSTM + Dense layer(s) + softmax/sigmoid: the output of the

embedder, the tensor E, serves as input to a Long Short-Term Memory (LSTM)

layer [30]. The last hidden state of the LSTM (which is a vector of size 64) goes

through one or two dense layers. Finally, either the sigmoid or the softmax function

is used.

3. Embedding + Bidirectional LSTM + Dense layer(s) + softmax/sigmoid: This

architecture has the same structure as the previous one with the exception that

instead of using a simple LSTM layer, it uses a Bidirectional [38] one.

4. Embedding + LSTM + GlobalMaxPooling + softmax/sigmoid: This architecture

is a variation of the second one where all hidden states of the LSTM are the input

of a global max pooling function.

I experimented with latent spaces of size 64 or 128 and multiple sizes for the dense lay-

ers. As for the activation function, I employed either the Rectified Linear Unit (ReLU) [39]

or the Gaussian Error Linear Unit (GELU) [40], which are two of the most popular ones.

The loss function was either binary cross-entropy or categorical cross-entropy. If the for-

mer was used, the output layer uses sigmoid activation and the target variable is given as a

one dimensional binary array. If the later is used, the output layer uses softmax activation



3.2. Non-interpretable deep models 23

Model Average test accuracy ± stddev. (%)

General Male Female

E64 + BLSTM + D64 + D32 + softmax 67.36 ± 1.31 67.58 ± 4.96 67.13 ± 2.46

E128 + LSTM + D64 + D32 + softmax 65.29 ± 1.88 60.18 ± 11.75 70.41 ± 8.56

E64 + BLSTM + D64 + D32 + sigmoid 63.98 ± 4.55 73.09 ± 8.24 54.88 ± 15.53

Table 3.3: Best three deep models’ accuracy results using leave-some-movies-out cross-

validation. “E`” denotes an embedding layer and “Dd” a dense layer, where the subscript

indicates the dimensionality of the output. The three architectures employ GELU activa-

tion function for the dense layers. The LSTM and Bidirectional LSTM layers (BLSTM)

have output dimensionality of 64.

and the target variable is a one-hot encoded version of the one dimensional binary array.

Those variations amount to 84 combinations. The models were trained using classic train,

validation, and test splitting, with the final model corresponding to the epoch when its

validation loss was the lowest. Their accuracy results are available in the Appendix in

Table 4.

From the 84 models, the best three were selected to be trained again, this time using

leave-some-movies-out cross-validation. The results are presented in Table 3.3. All of the

models perform worse than the best interpretable models from Section 3.1. Also, one of

the models is unbalanced, in the sense that it is much better at classifying men’s speech

than women’s speech. Figure 3.1 shows the progress of the training for those three models.

Note, that after a few epochs (see Figure 3.1), the validation loss reaches its lowest point.

After that point, the validation accuracy stagnates and the training accuracy shows signs

of overfitting.

3.2.2 BERT models

Bidirectional Encoder Representations from Transformers (BERT) models [41] are a pop-

ular baseline for large NLP models. Their name comes from its use of Transformer encoder

architecture to process each token of input text in the full context of all tokens before and

after. BERT models are usually pre-trained on a large corpus of text, then fine-tuned for

specific tasks, which is the approach I followed. Specifically, I employed the BERT model

pre-trained on English Wikipedia and BooksCorpus [42] datasets. Among the pre-trained

models available at Tesorflow Hub, I deemed this to be the one with a pre-training closest



3.2. Non-interpretable deep models 24

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Loss by epoch

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

50

60

70

80

90

100

Ac
cu

ra
cy

 %

Accuracy by epoch

Model
E(64) + BiLSTM + D(64,gelu) + D(32,gelu) + sigmoid
E(64) + BiLSTM + D(64,gelu) + D(32,gelu) + softmax
E(128) + LSTM + D(64,gelu) + D(32,gelu) + softmax

Set
Train
Validation

Figure 3.1: Accuracy percent and loss on the train and validation sets by epoch for the

best three deep models using leave-one-group-out cross-validation. The center line shows

the average and the shaded area represents a 95% confidence interval.

Model Average test accuracy ± stddev. (%)

General Male Female

BERT (modified text) 59.02 ± 6.71 89.93 ± 6.64 28.10 ± 20.03

BERT (original text) 65.17 ± 1.66 81.15 ± 5.43 49.18 ± 7.80

Table 3.4: BERT models’ accuracy results using leave-some-movies-out cross-validation.

to our eventual fine-tuning on the preprocessed Cornell corpus dataset.

Two BERT models were fine-tuned. One used as input the original text and the other

the altered version of the dialogues (as described in Section 2.1) where punctuation and

words that appear less than 5 times were removed. The weights of the final model are

obtained by rewinding them to the values that achieved the lowest validation loss. Fig-

ure 3.2 depicts the progress of the training for both models, indicating signs of overfitting.

The second model shows considerably better test accuracy results (see Table 3.4), which

was expected given that, compared to the altered text, the original one is more similar

to the natural language on which the BERT model was pre-trained. Moreover, using the

modified text, the loss and accuracy present more variability (see Figure 3.2). Never-

theless, both models present poor accuracy for the category “female”, which makes them

untrustworthy.



3.2. Non-interpretable deep models 25

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Loss by epoch

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

50

60

70

80

90

100

Ac
cu

ra
cy

 %

Accuracy by epoch

Model
BERT (using modified text)
BERT (using original text)

Set
Train
Validation

Figure 3.2: Accuracy percent and loss on the train and validation sets by epoch for BERT

models using leave-one-group-out cross-validation. The center line shows the average and

the shaded area represents a 95% confidence interval.



4

ProtoryNet

ProtoryNet [10] is a self-explaining model designed to work with sequential data. As its

predecessors mentioned in Section 1.2.3, it compares the inputs to generated prototypes

to make predictions. However, it aims to avoid some issues with other prototype-based

text classification models.

First, it intends to be more robust when working with long text sequences. Previous

approaches, such as ProSeNet [20], define prototypes at the document level. This can make

it difficult to match the input sequence to prototypes when those are long and complex

documents. For instance, consider a task of classifying reviews as positive or negative and

assume that the input document is the four sentences we see in Figure 4.1. Part of the

document expresses positive comments, while the rest does not. Such ambivalence can

complicate the process of finding adequate prototypes for this input. ProtoryNet attempts

to overcome this by splitting the document in sentences and mapping each of them to

a single prototype, which is called the active prototype of the sentence. For example,

the first sentence, “Food was delicious in this place”, is mapped to the prototype, “Great

food”.

Second, ProtoryNet aims to simplify the explanations by reducing the number of

prototypes needed. Methods such as ProSeNet need hundreds of prototypes to achieve

reliable performance, and the explanation of each prediction depends on all prototypes

related to a class. In comparison, ProtoryNet only needs as many prototypes as sentences

in the input sequence to provide the explanation. As a reference, the work [10] reports

that ProtoryNet required only 20 prototypes to match the accuracy of ProSeNet with 200

prototypes.

Moreover, the prototypes for ProSeNet [20] and ProtoPNet [19] belong to a specific

26



4.1. Architecture 27

class. In contrast, ProtoryNet’s prototypes are linked to the classes through a score. For

instance, in a binary classification task where a positive review is identified with 1 and a

negative one with 0, if a prototype’s score is 0.98, then it is mostly associated to positive

reviews, while a score of 0.04 indicates its association with negative reviews.

In the rest of this chapter I detail the architecture, loss function and other charac-

teristics of ProtoryNet, I discuss about the impact of different prototype initialisation

techniques, I present the performance of ProtoryNet in our text classification task and

challenge the interpretability of its results.

4.1 Architecture

Figure 4.1: Architecture of ProtoryNet from [10].

Consider a data set D = {(X(i), y(i)) : i = 1, . . . , N}. Each X(i) is a text sequence

composed of sentences xt ∈ RV , where V is the size of the vocabulary. In other words,

X(i) = (xt)Tt=1, with T being the number of sentences in the sequence. Each y(i) ∈ RC is

a one-hot encoded vector denoting the class labels and C is the number of classes. The

model consists of three parts:

1. Sentence encoder r. For a given sentence xt ∈ X(i), the sentence encoder r : RV →
RJ maps each sentence into a vector et of length J . In [10] the authors use the

pre-trained Google Universal Encoder [43] as encoder r. I use the same approach

and train the encoder along with the rest of the model.



4.2. Loss function 28

2. Prototype layer. This layer contains a set of K trainable prototypes

P = pk ∈ RJ : k = 1, . . . , K.

Note that, the prototypes are representations in the latent space. To make them

interpretable, every few epochs, they assign pk with the closest sequence embedding

in the training set. To initialise the prototypes, all sentences in the training set are

encoded and then grouped using k-medoids clustering [44]. The resulting medoids

are used as the initial prototypes. The prototype layer measures the similarity st,k

between et and each prototype pk. The similarity is defined by

st,k = exp

(
−d(et, pk)

ψ2

)
,

where ψ ∈ R was set to ψ2 = 10, and d is the Euclidean distance. The output of

the layer is the similarity matrix S̃ = [st,k] ∈ RT×K . Note that S̃ = [s̃1, . . . , s̃T ]>,

where s̃t ∈ RK is the row vector whose elements indicate how similar xt is to each

prototype.

3. RNN and fully connected layers. From now on, for each sentence, the architecture

only propagates information about the prototype with the maximum similarity to

the sentence, the active prototype. An immediate way of achieving this would be, for

each row of S̃, to zero all but its the maximum entry. However, such sparsification

is not differentiable, and therefore not adequate for training. Hence, the authors

approximate it by using that S ≈ Γ � S̃, where � denotes the Hadamard product

and

Γ = [softmax(γ · s̃1), . . . , softmax(γ · s̃T )],

with some constant γ ≥ 1e6. Finally, an LSTM model is applied to each row of S,

followed by a few fully connected layers.

4.2 Loss function

The loss function encompasses three terms. First, to ensure accuracy they minimise the

mean squared loss between predicted and ground truth values:

Lacc(D) =
1

N

N∑
i=1

‖y(i) − ŷ(i)‖2.



4.3. Experiments 29

Second, to guarantee diversity, i.e., to avoid redundant prototypes, a diversity loss

term is included:

Ldiv(D) = σ(η(δ − dmin)),

where dmin = mink1,k2 d(pk1 , pk2), d is the Euclidean distance, σ is the sigmoid function, η

is a smoothing constant set to 1, and δ is a positive real that enforces a minimum distance

among the prototypes.

Finally, a prototypicality loss is included:

Lproto =
1

M

∑
X(i)∈D

∑
xt∈X(i)

min
k
d(r(xt), pk).

It encourages prototypes to be close to the sentences they represent:

The final loss function is L = Lacc + αLdiv + βLproto. The authors empirically set

α = 0.1 and β = 1e−4, claiming that different combinations of α and β lead to similar

performance as long as they are set to small positive values.

4.3 Experiments

4.3.1 Prototype initialisations

As stated before, prototypes for ProtoryNet are initialised by the means of a k-medoids

clustering. However, using this approach for our dataset produced redundant prototypes.

For instance, in a model of 10 prototypes, k-medoids selected the following initial proto-

types: “Oh, God,” “I couldn’t believe it he just left!,” “Oh God,” “Aw, come on,” “You

come up with that yourself?,”“Oh, come on,”“Oh my God!,”“Oh dear,”“Oh, dear,” and

“Oh no.” In initial experiments, the lack of diversity persisted after training for many

epochs. This might indicate that when starting with repeated prototypes it is hard for

the model to acquire prototype heterogeneity.

As an alternative, I decided to initialise the prototypes uniformly at random, without

replacement. This approach brings the risk of a “bad random selection” of prototypes

that will prevent the model from learning properly. As with other algorithms that can be

affected by their initialisation, we can run the model several times, see how the accuracy

measures behave, and keep the model whose initialisation ended in better results. It is

likely that more robust approaches can be designed. Those and a more robust study on

the impact of different initialisation are left as future work.



4.3. Experiments 30

4.3.2 Performance on gender classification

I explored ProtoryNet models with 10, 30, and 50 prototypes. They were trained on

the original dialogues, i.e., preserving punctuation and words that appear less than 5

times, to resemble more the data on which Google Universal Encoder was pre-trained.

Leave-some-movies-out cross-validation was used, saving each model at the moment its

validation accuracy was the highest.

Its was expected for the accuracy to increase with the number of prototypes. However,

Table 4.1 shows that the models with more prototypes perform the worst. One could

hypothesize that after some optimal number of prototypes, any extra would only add

noise in the model, harming performance. For our case, the results suggest that this

optimal lies around 10 prototypes, which is surprisingly small for a task as complex as

identifying gender patterns of speech.

Model Average test accuracy ± stddev. (%)

General Male Female

Best Logistic Regression 72.09 ± 1.46 74.71 ± 3.69 69.47 ± 1.85

Best deep (non-interpretable) 67.36 ± 1.31 67.58 ± 4.96 67.13 ± 2.46

ProtoryNet

10 prototypes 66.18 ± 1.54 74.06 ± 5.30 58.31 ± 4.36

30 prototypes 62.51 ± 1.94 58.30 ± 12.19 66.71 ± 9.33

50 prototypes 55.02 ± 3.09 52.45 ± 12.97 57.59 ± 12.76

Table 4.1: Accuracy results of ProtoryNet models using leave-some-movies-out cross-

validation alongside those for the best performing logistic regression and deep models.

Figure 4.2 illustrates the validation accuracy during the training progress for the three

models. In particular, it indicates that the model with 50 prototypes stagnate slightly

above 50% of accuracy. Moreover, the model of 10 prototypes improves only for the first

epochs, followed by a gentle decrease in accuracy.

The best ProtoryNet model (the one with 10 prototypes) is outperformed by both

the best logistic regression and the best deep non-interpretable models (see Table 4.1).

Therefore, the logistic regression model is preferred by all metrics: it is intrinsically in-

terpretable, it offers the best test accuracy results, and its training time is the shortest,

specially compared to ProtoryNet. These findings hint that, despite common belief, non-

interpretable models do not necessarily outperform intrinsically interpretable ones. Works



4.3. Experiments 31

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

Va
lid

at
io

n 
ac

cu
ra

cy

Prototypes
10
30
50

Figure 4.2: Accuracy percent on the validation set by epoch for ProtoryNet models ac-

cording to their number of prototypes using leave-some-movies-out cross-validation. The

center line shows the average. The shaded area represents a 95% confidence interval.

such as [27] argue this in a much broader sense.

4.3.3 Challenging the interpretability of ProtoryNet

The key promise of ProtoryNet is its interpretability. Given a sequence of text to be

classified, ProtoryNet splits it into sentences, links each sentence to a prototype, and then

classifies the text based just on the prototypes related to it. Moreover, each prototype is

related to the classes through a score. In our case, scores close to 1 indicate association

with the category “female,” while scores close to 0 indicate association to the category

“male”. This should make explanations accessible via the prototypes.

Nevertheless, the trained prototypes of the best performing model (see Table 4.2) and

their scores suggest that all prototypes are linked to the category “female” almost to the

same degree. With such prototypes one would expect the the model would classify all

samples as female. However, as presented in Table 4.1, the model exhibits an accuracy of

66%, and it is better at classifying text from male characters (74% of accuracy vs. 58%

for females). Hence, even correct classifications seem unrelated to the prototypes.

Table 4.3 presents some of the dialogues from two characters and the prototypes as-

sociated to each sentence (i.e., their active prototypes). Both characters were correctly

classified by the model with high confidence. Since those examples lie far from the decision

boundary, they should be cases on which the explanations and the relationship between

the text and prototypes are clear. Nonetheless, it is hard to link each sentence to its active



4.3. Experiments 32

Prototypes Score

1. And what did you do? 0.72

2. Osso buco? 0.74

3. Oh, you know, the usual small talk, “What’s new, how ya been, how do you

want to die?”

0.77

4. Do you want do you want to try and tell me why you did it? 0.76

5. What exactly does that mean? 0.73

6. Yes, no, yes. 0.73

7. Okay, I gotta tell you. 0.72

8. You know, Jack’s pretty eager to get up to you know, but, uh, yeah. 0.64

9. I have to find some way to get on with my life and I’m going to try. 0.77

10. He took a lot of money with him and he didn’t come back. 0.77

Table 4.2: Final prototypes of the best performing ProtoryNet model (with 10 prototypes).

The prototype’s score indicates the association of the prototype to the classes. A score

of 1 (respectively 0) indicates strong association with the category “female” (respectively

“male”). Hence, all prototypes show association to the category “female.”

prototype. For cases were the character was misclassified, establishing such relationships

was equally difficult.

Both, the prototypes’ scores and the ambiguous relationship between the text and

its active prototypes lead me to question the interpretability of ProtoryNet. It seems

that, after mapping each sentence to its active prototype, the model is still taking some

decisions which remain occluded in the layers that follow the prototype layer.



4.3. Experiments 33

Original dialogues Associated prototype

Female character

Then why does she act so dumb? What exactly does that mean?

She hasn’t got any sense. I have to find some way to get on with my

life and I’m going to try.

In some ways, she’s awful dumb. I have to find some way to get on with my

life and I’m going to try.

Buddy, I’m worried about Rose. I have to find some way to get on with my

life and I’m going to try.

No, Mother, he’s lying You know, Buddy,

sometimes you make me sick.

Oh, you know, the usual small talk,

”What’s new, how ya been, how do you

want to die?”

Wasn’t Daddy wonderful? He took a lot of money with him and he

didn’t come back.

He wanted to kiss her some more and play

with her, but he didn’t, because he loves

Mother and all of us, and he loves Rose,

too.

He took a lot of money with him and he

didn’t come back.

Isn’t he wonderful, isn’t he great? He took a lot of money with him and he

didn’t come back.

Male character

Run a good-cop-bad-cop. Osso buco?

You want to help me swing it? Okay, I gotta tell you.

Stay smart, Bud. Okay, I gotta tell you.

We build a case. Osso buco?

We play by the rules. Osso buco?

What? Okay, I gotta tell you.

That’s the angle Jack was working. I have to find some way to get on with my

life and I’m going to try.

Dudley must work for Patchett. Osso buco?

Table 4.3: Sample sentences from two characters and the prototypes associated to each

sentence according to the best performing ProtoryNet model. Both characters were cor-

rectly classified by the model.



Conclusion

I evaluated the performance of ProtoryNet in a text classification task where we aimed

to distinguish the gender of film characters based on their speech. To properly assess its

capabilities I compared it to different intrinsically interpretable models (logistic regression

and complement näıve bayes) and deep models regarded as black-boxes (fully connected

networks, LSTMs, Bidirectional LSTMs and BERT models). To this end, a dataset of

film dialogues was assembled based on existing films corpora. Using word embeddings and

WEAT, I found moderate (but not statistically significant) gender biases in the dataset.

Among the main results I observe that ProtoryNet’s accuracy is comparable to that

of well established deep-models such as Bidirectional LSTMs. Nevertheless, in this spe-

cific task, classic intrinsic interpretable models, such as logistic regression, offer better

accuracy and clearer interpretation. Furthermore, the explanations provided by Proto-

ryNet’s prototypes were ambiguous, questioning the model’s self-explainability. It seems

that ProtoryNet is still taking decisions that remain occluded in its layers. Defining inter-

pretability as “the degree to which a human can understand the cause of a decision” [14],

at least for this task, I would say ProtoryNet offers little to none of it.

On the other hand, logistic regression models’ explanations shed some light on pat-

terns that characterise each gender’s dialogues. They show a predominance of references

to women in men’s speech and vice-versa, as well as a preference of female speakers for

adverbial and adjectival expressions, interjectional phrases, and polite words; while curs-

ing, noun-based expressions, and lexical fields such as money, sports and work are male-

favoured practices. These findings match of the results of previous works [1, 2, 3, 4, 5].

Possible directions for future work include assessing the interpretability of ProtoryNet

in a wider variety of datasets, since it appears to perform well in the original work for the

task of distinguishing positive and negative reviews. Also, it would be interesting to in-

vestigate more thoroughly prototype initialisation schemes since those could be important

to the final quality of the prototypes.

34



Bibliography

[1] Lucia Busso and Gianmarco Vignozzi. Gender Stereotypes in Film Language: A Corpus-

Assisted Analysis. pages 71–76. January 2017.

[2] Alexandra Schofield and Leo Mehr. Gender-Distinguishing Features in Film Dialogue. In

Proceedings of the Fifth Workshop on Computational Linguistics for Literature, pages 32–

39, San Diego, California, USA, June 2016. Association for Computational Linguistics.

[3] Apoorv Agarwal, Jiehan Zheng, Shruti Kamath, Sriramkumar Balasubramanian, and Shirin

Ann Dey. Key Female Characters in Film Have More to Talk About Besides Men: Au-

tomating the Bechdel Test. In Proceedings of the 2015 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

pages 830–840, Denver, Colorado, May 2015. Association for Computational Linguistics.

[4] Anil Ramakrishna, Victor R. Mart́ınez, Nikolaos Malandrakis, Karan Singla, and Shrikanth

Narayanan. Linguistic analysis of differences in portrayal of movie characters. In Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 1669–1678, Vancouver, Canada, 2017. Association for Computational

Linguistics.

[5] Na Cheng, R. Chandramouli, and K.P. Subbalakshmi. Author gender identification from

text. Digital Investigation, 8(1):78–88, July 2011. Number: 1.

[6] M. Corney, O. de Vel, A. Anderson, and G. Mohay. Gender-preferential text mining of e-mail

discourse. In 18th Annual Computer Security Applications Conference, 2002. Proceedings.,

pages 282–289, Las Vegas, NV, USA, 2002. IEEE Comput. Soc.

[7] Andreas Liesenfeld, Gábor Parti, Yuyin Hsu, and Chu-Ren Huang. Predicting gender and

age categories in English conversations using lexical, non-lexical, and turn-taking features.

In Proceedings of the 34th Pacific Asia Conference on Language, Information and Com-

putation, pages 157–166, Hanoi, Vietnam, October 2020. Association for Computational

Linguistics.

35



36

[8] Ananya, Nitya Parthasarthi, and Sameer Singh. GenderQuant: Quantifying Mention-Level

Genderedness. In Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers), pages 2959–2969, Minneapolis, Minnesota, June 2019. Association

for Computational Linguistics.

[9] Daniel C. Elton. Self-explaining AI as an Alternative to Interpretable AI. In Ben Goertzel,

Aleksandr I. Panov, Alexey Potapov, and Roman Yampolskiy, editors, Artificial General

Intelligence, pages 95–106, Cham, 2020. Springer International Publishing.

[10] Dat Hong, Stephen S. Baek, and Tong Wang. Interpretable Sequence Classification Via

Prototype Trajectory. CoRR, abs/2007.01777, 2020. arXiv: 2007.01777.

[11] Cristian Danescu-Niculescu-Mizil and Lillian Lee. Chameleons in imagined conversations:

A new approach to understanding coordination of linguistic style in dialogs. In Proceedings

of the Workshop on Cognitive Modeling and Computational Linguistics, ACL 2011, 2011.

[12] Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. Semantics derived automatically

from language corpora contain human-like biases. Science, 356(6334):183–186, 2017. eprint:

https://www.science.org/doi/pdf/10.1126/science.aal4230.

[13] Ryan Steed and Aylin Caliskan. Image Representations Learned With Unsupervised Pre-

Training Contain Human-like Biases. In Proceedings of the 2021 ACM Conference on Fair-

ness, Accountability, and Transparency, pages 701–713, Virtual Event Canada, March 2021.

ACM.

[14] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial

intelligence, 267:1–38, 2019.

[15] Christoph Molnar. Interpretable Machine Learning. Lulu.com, 2 edition, 2022.

[16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I Trust You?”:

Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 1135–

1144, New York, NY, USA, 2016. Association for Computing Machinery. event-place: San

Francisco, California, USA.

[17] Damien Garreau and Dina Mardaoui. What does LIME really see in images? In ICML

2021 - 38th International Conference on Machine Learning, virtual, United States, July

2021.



37

[18] David Alvarez-Melis and Tommi S. Jaakkola. Towards Robust Interpretability with Self-

Explaining Neural Networks. In Proceedings of the 32nd International Conference on Neural

Information Processing Systems, NIPS’18, pages 7786–7795, Red Hook, NY, USA, 2018.

Curran Associates Inc. event-place: Montréal, Canada.

[19] Chaofan Chen, Oscar Li, Alina Barnett, Jonathan Su, and Cynthia Rudin. This looks

like that: deep learning for interpretable image recognition. CoRR, abs/1806.10574, 2018.

arXiv: 1806.10574.

[20] Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. Interpretable and Steerable Sequence

Learning via Prototypes. In Proceedings of the 25th ACM SIGKDD International Confer-

ence on Knowledge Discovery &amp; Data Mining, KDD ’19, pages 903–913, New York,

NY, USA, 2019. Association for Computing Machinery. event-place: Anchorage, AK, USA.

[21] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert

Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions

by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015. Publisher: Public

Library of Science San Francisco, CA USA.

[22] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.

In International Conference on Machine Learning, pages 3319–3328. PMLR, 2017.

[23] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,

Devi Parikh, and Dhruv Batra. Grad-CAM: Visual Explanations From Deep Networks

via Gradient-Based Localization. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), October 2017.

[24] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In

Proceedings of the 31st international conference on neural information processing systems,

pages 4768–4777, 2017.

[25] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Convolutional

Networks: Visualising Image Classification Models and Saliency Maps. In Workshop at

International Conference on Learning Representations, 2014.

[26] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important Features

Through Propagating Activation Differences. In Doina Precup and Yee Whye Teh, edi-

tors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of

Proceedings of Machine Learning Research, pages 3145–3153. PMLR, August 2017.

[27] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions

and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, May 2019.



38

[28] Li Deng. The mnist database of handwritten digit images for machine learning research.

IEEE Signal Processing Magazine, 29(6):141–142, 2012. Publisher: IEEE.

[29] Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based rea-

soning through prototypes: A neural network that explains its predictions. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 32, 2018. Issue: 1.

[30] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997. Publisher: MIT Press.

[31] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. 2013.

[32] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Dis-

tributed representations of words and phrases and their compositionality. In Christopher

J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, editors, Ad-

vances in Neural Information Processing Systems 26: 27th Annual Conference on Neural

Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013,

Lake Tahoe, Nevada, United States, pages 3111–3119, 2013.

[33] Anthony G Greenwald, Debbie E McGhee, and Jordan LK Schwartz. Measuring individual

differences in implicit cognition: the implicit association test. Journal of personality and

social psychology, 74(6):1464, 1998. Publisher: American Psychological Association.

[34] Gerard Salton and Chung-Shu Yang. On the specification of term values in automatic

indexing. Journal of documentation, 1973. Publisher: MCB UP Ltd.

[35] Jason D Rennie, Lawrence Shih, Jaime Teevan, and David R Karger. Tackling the poor as-

sumptions of naive bayes text classifiers. In Proceedings of the 20th international conference

on machine learning (ICML-03), pages 616–623, 2003.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Jour-

nal of Machine Learning Research, 12:2825–2830, 2011.

[37] François Chollet et al. Keras. https://keras.io, 2015.

[38] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional

LSTM and other neural network architectures. Neural Networks, 18(5-6):602–610, 2005.

[39] Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biological

cybernetics, 20(3):121–136, 1975.

https://keras.io


39

[40] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint

arXiv:1606.08415, 2016.

[41] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[42] Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, An-

tonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual

explanations by watching movies and reading books. In 2015 IEEE International Confer-

ence on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 19–27.

IEEE Computer Society, 2015.

[43] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John,

Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian

Strope, and Ray Kurzweil. Universal Sentence Encoder. CoRR, abs/1803.11175, 2018.

arXiv: 1803.11175.

[44] Francesco E. Maranzana. On the location of supply points to minimize transportation costs.

IBM Syst. J., 2(2):129–135, 1963.



Appendix

Model Average test accuracy (%)

General Male Female

E64 + BLSTM + Dgelu
64 + Dgelu

32 + sigmoid 71.37 73.33 69.42

E64 + BLSTM + Dgelu
64 + Dgelu

32 + softmax 70.54 80.00 61.16

E128 + LSTM + Dgelu
64 + Dgelu

32 + softmax 69.71 79.17 60.33

E128 + BLSTM + Drelu
64 + softmax 69.29 65.83 72.73

E64 + LSTM + Dgelu
32 + Dgelu

16 + softmax 69.29 65.83 72.73

E128 + BLSTM + Dgelu
32 + Dgelu

16 + softmax 68.88 64.17 73.55

E128 + BLSTM + Drelu
32 + sigmoid 68.88 63.33 74.38

E128 + LSTM + MaxPool + softmax 68.88 70.00 67.77

E128 + BLSTM + Dgelu
64 + softmax 68.46 70.83 66.12

E64 + BLSTM + Drelu
32 + softmax 68.46 64.17 72.73

E128 + MaxPool + Drelu
64 + Drelu

32 + sigmoid 68.46 68.33 69.42

E64 + BLSTM + Drelu
32 + sigmoid 68.46 82.50 54.55

E64 + BLSTM + Dgelu
32 + Dgelu

16 + sigmoid 68.46 80.00 57.02

E64 + BLSTM + Dgelu
32 + Dgelu

16 + softmax 68.46 70.83 66.12

E64 + MaxPool + Dgelu
32 + Dgelu

16 + sigmoid 68.05 68.33 67.77

E128 + MaxPool + Dgelu
64 + Dgelu

32 + sigmoid 68.05 67.50 68.60

E64 + BLSTM + Dgelu
32 + softmax 68.05 68.33 67.77

E64 + LSTM + Dgelu
64 + Dgelu

32 + softmax 67.63 58.33 76.86

E128 + BLSTM + Drelu
32 + softmax 67.63 69.17 66.12

E128 + MaxPool + Drelu
32 + Drelu

16 + sigmoid 67.63 65.00 70.25

E64 + BLSTM + Drelu
64 + Drelu

32 + sigmoid 67.63 67.50 67.77

E64 + BLSTM + Drelu
64 + Drelu

32 + softmax 67.63 81.67 53.72

E128 + BLSTM + Dgelu
64 + Dgelu

32 + sigmoid 67.63 61.67 73.55

E128 + LSTM + MaxPool + sigmoid 67.22 83.33 51.24

E128 + LSTM + Dgelu
32 + sigmoid 67.22 74.17 60.33

40



41

Model Average test accuracy (%)

General Male Female

E128 + BLSTM + Dgelu
32 + Dgelu

16 + sigmoid 67.22 70.83 63.64

E64 + LSTM + Dgelu
64 + sigmoid 66.80 71.67 61.98

E64 + LSTM + Drelu
32 + Drelu

16 + softmax 66.80 61.67 71.90

E64 + LSTM + Drelu
64 + sigmoid 66.80 71.67 61.98

E128 + LSTM + Drelu
64 + Drelu

32 + sigmoid 66.80 62.50 71.07

E64 + BLSTM + Drelu
64 + softmax 66.80 65.83 67.77

E64 + MaxPool + Drelu
64 + Drelu

32 + sigmoid 66.80 70.00 63.64

E128 + MaxPool + Dgelu
32 + Dgelu

16 + softmax 66.80 61.67 71.90

E64 + LSTM + Drelu
32 + sigmoid 66.39 82.50 50.41

E128 + LSTM + Drelu
64 + sigmoid 66.39 62.50 70.25

E128 + LSTM + Dgelu
64 + Dgelu

32 + sigmoid 66.39 65.83 66.94

E128 + BLSTM + Dgelu
64 + sigmoid 66.39 82.50 50.41

E64 + LSTM + Dgelu
32 + sigmoid 66.39 56.67 76.03

E128 + BLSTM + Dgelu
32 + softmax 65.98 78.33 53.72

E64 + LSTM + Drelu
32 + Drelu

16 + sigmoid 65.98 85.83 46.28

E64 + LSTM + Dgelu
32 + softmax 65.98 64.17 67.77

E128 + BLSTM + Drelu
64 + Drelu

32 + sigmoid 65.98 59.17 72.73

E128 + LSTM + Drelu
32 + softmax 65.98 72.50 59.50

E64 + LSTM + MaxPool + sigmoid 65.98 54.17 77.69

E64 + LSTM + Dgelu
64 + softmax 65.56 60.83 70.25

E128 + BLSTM + Drelu
64 + sigmoid 65.15 68.33 61.98

E128 + LSTM + Dgelu
32 + Dgelu

16 + softmax 65.15 67.50 62.81

E128 + LSTM + Dgelu
64 + sigmoid 65.15 62.50 67.77

E64 + LSTM + Drelu
32 + softmax 65.15 61.67 68.60

E64 + LSTM + Dgelu
64 + Dgelu

32 + sigmoid 65.15 58.33 71.90

E64 + BLSTM + Drelu
64 + sigmoid 64.73 59.17 70.25

E64 + BLSTM + Dgelu
64 + softmax 64.73 51.67 77.69

E128 + LSTM + Dgelu
32 + Dgelu

16 + sigmoid 64.73 69.17 60.33

E64 + BLSTM + Drelu
32 + Drelu

16 + softmax 64.73 60.83 68.60

E64 + LSTM + Dgelu
32 + Dgelu

16 + sigmoid 64.32 50.83 77.69

E64 + BLSTM + Dgelu
64 + sigmoid 64.32 42.50 85.95

E128 + MaxPool + Drelu
32 + Drelu

16 + softmax 64.32 69.17 59.50

E128 + LSTM + Drelu
64 + Drelu

32 + softmax 64.32 71.67 57.02

E128 + MaxPool + Dgelu
64 + Dgelu

32 + softmax 64.32 62.50 66.12



42

Model Average test accuracy (%)

General Male Female

E128 + LSTM + Dgelu
32 + softmax 64.32 70.83 57.85

E64 + MaxPool + Drelu
64 + Drelu

32 + softmax 63.90 59.17 68.60

E64 + MaxPool + Dgelu
64 + Dgelu

32 + softmax 63.90 65.83 61.98

E128 + LSTM + Drelu
32 + sigmoid 63.90 60.83 66.94

E128 + BLSTM + Dgelu
32 + sigmoid 63.49 59.17 67.77

E64 + MaxPool + Dgelu
64 + Dgelu

32 + sigmoid 63.49 55.00 71.90

E128 + MaxPool + Drelu
64 + Drelu

32 + softmax 63.07 67.50 58.68

E128 + BLSTM + Drelu
32 + Drelu

16 + sigmoid 63.07 50.00 76.03

E128 + MaxPool + Dgelu
32 + Dgelu

16 + sigmoid 63.07 65.00 61.16

E64 + LSTM + MaxPool + softmax 62.66 40.00 85.12

E128 + LSTM + Drelu
32 + Drelu

16 + sigmoid 62.66 46.67 78.51

E128 + BLSTM + Dgelu
64 + Dgelu

32 + softmax 62.24 49.17 75.21

E128 + LSTM + Drelu
32 + Drelu

16 + softmax 62.24 48.33 76.03

E64 + BLSTM + Drelu
32 + Drelu

16 + sigmoid 62.24 45.00 79.34

E64 + LSTM + Drelu
64 + softmax 61.83 57.50 66.12

E128 + LSTM + Dgelu
64 + softmax 61.41 63.33 59.50

E64 + MaxPool + Dgelu
32 + Dgelu

16 + softmax 61.00 61.67 60.33

E64 + BLSTM + Dgelu
32 + sigmoid 60.58 57.50 63.64

E64 + MaxPool + Drelu
32 + Drelu

16 + softmax 60.58 38.33 82.64

E64 + MaxPool + Drelu
32 + Drelu

16 + sigmoid 60.17 60.00 60.33

E64 + LSTM + Drelu
64 + Drelu

32 + softmax 60.17 61.67 58.68

E128 + LSTM + Drelu
64 + softmax 58.92 51.67 66.12

E64 + LSTM + Drelu
64 + Drelu

32 + sigmoid 58.51 52.50 64.46

E128 + BLSTM + Drelu
32 + Drelu

16 + softmax 57.68 38.33 76.86

E128 + BLSTM + Drelu
64 + Drelu

32 + softmax 53.94 48.33 59.50

Table 4: Deep models’ accuracies. E` denotes an embedding

model with output of dimensionality `. Df
d represents a dense

layer with output of dimensionality d and activation function

f . The LSTM and Bidirectional LSTM layers (BLSTM) have

output dimensionality of 64. Finally, the term “MaxPool”

refers to a global max-pooling.



43

Group Words

Male male, man, boy, brother, he, him, his, son

Female female, woman, girl, sister, she, her, hers, daughter

Male names John, Paul, Mike, Kevin, Steve, Greg, Jeff, Bill

Female names Amy, Joan, Lisa, Sarah, Diana, Kate, Ann, Donna

Science science, technology, physics, chemistry, Einstein, NASA, experiment,

astronomy

Art poetry, art, dance, literature, novel, symphony, drama, sculpture

Career executive, management, professional, corporation, salary, office, busi-

ness, career

Family home, parents, children, family, cousins, marriage, wedding, relatives

Instruments cello, guitar, clarinet, trumpet, drum, tuba, bell, piano, viola, horn,

saxophone, violin

Weapon whip, mace, arrow, bomb, grenade, missile, rifle, knife, shotgun, gun,

pistol, tank

Pleasant rainbow, laughter, loyal, gift, freedom, caress, diploma, sunrise, love,

miracle, honour, vacation

Unpleasant disaster, abuse, assault, murder, filth, poison, cancer, sickness, prison,

ugly, vomit, crash

Table 1: Groups of words used for Word-Embedding Association Tests. The groups

“Weapon”, “Pleasant”, and “Unpleasant” have been randomly shortened to match the size

of the group “Instruments” as many words in the latter did not occur frequently enough

in the Cornell corpus to figure in the Word2vec embedder.

Model C Penalty type Solver

TF-IDF (unigrams) + LR 0.20 l2 newton-cg

TF-IDF (unigrams, bigrams and trigrams) + LR 0.20 l2 newton-cg

BoW (unigrams) + LR 0.20 l2 saga

BoW (unigrams, bigrams and trigrams) + LR 0.05 l2 sag

Table 2: Best hyperparameters found by the grid search process for logistic regression

models. “LR” refers to logistic regression. C is the inverse of regularisation strength

parameter.



44

Model α Norm

TF-IDF (unigrams) + CNB 1 False

TF-IDF (unigrams, bigrams and trigrams) + CNB 0.1 True

BoW (unigrams) + CNB 10 False

BoW (unigrams, bigrams and trigrams) + CNB 1 False

Table 3: Best hyperparameters found by the grid search process for CNB models. α is

the additive smoothing parameter. The norm parameter decides whether or not a second

normalisation of the weights is performed.


	Abstract
	Introduction
	Related work
	Data science in gender studies
	Interpretability
	What is interpretability and why is it important
	Taxonomy of interpretability methods
	Self-explaining machine learning


	The Cornell Corpus
	Data preparation
	Gender biases in the corpus

	Text classification models
	Interpretable non-deep models
	Non-interpretable deep models
	Fully connected networks, LSTMs and Bidirectional LSTMs
	BERT models


	ProtoryNet
	Architecture
	Loss function
	Experiments
	Prototype initialisations
	Performance on gender classification
	Challenging the interpretability of ProtoryNet


	Conclusion
	Bibliography
	Appendix

